Produktnummer:
187ada6869d81a4bb18d0e097ea09b740c
Themengebiete: | Control Systems Cyber-Physical Systems Data-driven Decision Making Distributed Control Game Theory Multi-Agent Systems Non-equilibrium Learning Optimal and Adaptive Control Privacy and Security Reinforcement Learning |
---|---|
Veröffentlichungsdatum: | 25.06.2022 |
EAN: | 9783030609924 |
Sprache: | Englisch |
Seitenzahl: | 833 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Cansever, Derya Lewis, Frank L. Vamvoudakis, Kyriakos G. Wan, Yan |
Verlag: | Springer International Publishing |
Produktinformationen "Handbook of Reinforcement Learning and Control"
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology.The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including:deep learning;artificial intelligence;applications of game theory;mixed modality learning; andmulti-agent reinforcement learning.Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen