Gröbner Deformations of Hypergeometric Differential Equations
Produktnummer:
183884def1ac8b41eeb8ce7b3d1d015559
Autor: | Saito, Mutsumi Sturmfels, Bernd Takayama, Nobuki |
---|---|
Themengebiete: | Gröbner Basen Gröbner bases Hypergeometric function Hypergeometrische Funktionen Weyl algebra combinatorial commutative algebra differential equation holonome Systeme holonomic systems hypergeometric functions |
Veröffentlichungsdatum: | 12.11.1999 |
EAN: | 9783540660651 |
Sprache: | Englisch |
Seitenzahl: | 254 |
Produktart: | Gebunden |
Verlag: | Springer Berlin |
Produktinformationen "Gröbner Deformations of Hypergeometric Differential Equations"
In recent years, new algorithms for dealing with rings of differential operators have been discovered and implemented. A main tool is the theory of Gröbner bases, which is reexamined here from the point of view of geometric deformations. Perturbation techniques have a long tradition in analysis; Gröbner deformations of left ideals in the Weyl algebra are the algebraic analogue to classical perturbation techniques. The algorithmic methods introduced here are particularly useful for studying the systems of multidimensional hypergeometric PDEs introduced by Gelfand, Kapranov and Zelevinsky. The Gröbner deformation of these GKZ hypergeometric systems reduces problems concerning hypergeometric functions to questions about commutative monomial ideals, and leads to an unexpected interplay between analysis and combinatorics. This book contains a number of original research results on holonomic systems and hypergeometric functions, and raises many open problems for future research in this area.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen