Geometric Harmonic Analysis I
Produktnummer:
18301fa25127ab4224bef8cc0c2137a1db
Autor: | Mitrea, Dorina Mitrea, Irina Mitrea, Marius |
---|---|
Themengebiete: | Ahlfors regular domain Divergence theorem Gauss-Green theorem NTA domain Reifenberg flat domain Stokes theorem nontangentially accessible boundary nontangential maximal function regular SKT domain uniform domain |
Veröffentlichungsdatum: | 05.11.2022 |
EAN: | 9783031059490 |
Sprache: | Englisch |
Seitenzahl: | 924 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Untertitel: | A Sharp Divergence Theorem with Nontangential Pointwise Traces |
Produktinformationen "Geometric Harmonic Analysis I"
This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. The text is intended for researchers, graduate students, and industry professionals interested in applications of harmonic analysis and geometric measure theory to complex analysis, scattering, and partial differential equations.Volume I establishes a sharp version of the Divergence Theorem (aka Fundamental Theorem of Calculus) which allows for an inclusive class of vector fields whose boundary trace is only assumed to exist in a nontangential pointwise sense.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen