Functional Fractional Calculus for System Identification and Controls
Produktnummer:
180d37f6b2a97a4880bbd514503f549430
Autor: | Das, Shantanu |
---|---|
Themengebiete: | Applied Fractional Calculus Differintegration Fractional Calculus Generalized Fractional Calculus calculus minimum system system identification |
Veröffentlichungsdatum: | 15.10.2010 |
EAN: | 9783642091780 |
Sprache: | Englisch |
Seitenzahl: | 240 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Functional Fractional Calculus for System Identification and Controls"
This work is inspired by thought to have an overall fuel-ef?cient nuclear plant control system. I picked up the topic in 2002 while deriving the reactor control laws, which aimed at fuel ef?ciency. Controlling the nuclear reactor close to its natural behavior by concept of exponent shape governor, ratio control and use of logarithmic logic, aims at the fuel ef?ciency. The power-maneuvering trajectory is obtained by shaped-normalized-period function, and this de?nes the road map on which the reactor should be governed. The experience of this concept governing the Atomic Power Plant of Tarapur Atomic Power Station gives lesser overall gains compared to the older plants, where conventional proportional integral and deri- tive type (PID) scheme is employed. Therefore, this motivation led to design the scheme for control system than the conventional schemes to aim at overall plant ef?ciency. Thus, I felt the need to look beyondPID and obtained the answer in fr- tional order control system, requiring fractional calculus (a 300-year-old subject). This work is taken from a large number of studies on fractional calculus and here it is aimed at giving an application-orientedtreatment, to understandthis beautiful old new subject. The contribution in having fractional divergence concept to describe neutron ?ux pro?le in nuclear reactors and to make ef?cient controllers based on fractional calculus is a minor contribution in this vast (hidden) area of science.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen