First-order and Stochastic Optimization Methods for Machine Learning
Produktnummer:
18e2f85b0a3ee24e2184dbc87a22f9412f
Autor: | Lan, Guanghui |
---|---|
Themengebiete: | Distributed and decentralized methods Machine learning algorithms Nonconvex optimization methods Randomized algorithms Stochastic optimization methods |
Veröffentlichungsdatum: | 16.05.2020 |
EAN: | 9783030395674 |
Sprache: | Englisch |
Seitenzahl: | 582 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "First-order and Stochastic Optimization Methods for Machine Learning"
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen