Produktnummer:
188829602aff0f4a5182642109d6e96b24
Themengebiete: | Group theory algebra algebraic group character theory finite group representation theory |
---|---|
Veröffentlichungsdatum: | 21.10.2012 |
EAN: | 9789401041454 |
Sprache: | Englisch |
Seitenzahl: | 458 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Borovik, A.V. Bryant, R.M. Hartley, B. Seitz, G.M. |
Verlag: | Springer Netherland |
Produktinformationen "Finite and Locally Finite Groups"
This volume contains the proceedings of the NATO Advanced Study Institute on Finite and Locally Finite Groups held in Istanbul, Turkey, 14-27 August 1994, at which there were about 90 participants from some 16 different countries. The ASI received generous financial support from the Scientific Affairs Division of NATO. INTRODUCTION A locally finite group is a group in which every finite set of elements is contained in a finite subgroup. The study of locally finite groups began with Schur's result that a periodic linear group is, in fact, locally finite. The simple locally finite groups are of particular interest. In view of the classification of the finite simple groups and advances in representation theory, it is natural to pursue classification theorems for simple locally finite groups. This was one of the central themes of the Istanbul conference and significant progress is reported herein. The theory of simple locally finite groups intersects many areas of group theory and representation theory, so this served as a focus for several articles in the volume. Every simple locally finite group has what is known as a Kegel cover. This is a collection of pairs {(G , Ni) liE I}, where I is an index set, each group Gi is finite, i Ni

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen