Produktnummer:
1821543bf81d5e41d0a3b1914383bd8b84
Themengebiete: | Deep Learning Domain Adaptation Domain Confusion Federated Learning Machine Learning Multitask Learning One-shot Learning Self-taught Leaning Transfer Learning Zero-shot Learning |
---|---|
Veröffentlichungsdatum: | 02.10.2023 |
EAN: | 9783031117503 |
Sprache: | Englisch |
Seitenzahl: | 371 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Razavi-Far, Roozbeh Taylor, Matthew E. Wang, Boyu Yang, Qiang |
Verlag: | Springer International Publishing |
Produktinformationen "Federated and Transfer Learning"
This book provides a collection of recent research works on learning from decentralized data, transferring information from one domain to another, and addressing theoretical issues on improving the privacy and incentive factors of federated learning as well as its connection with transfer learning and reinforcement learning. Over the last few years, the machine learning community has become fascinated by federated and transfer learning. Transfer and federated learning have achieved great success and popularity in many different fields of application. The intended audience of this book is students and academics aiming to apply federated and transfer learning to solve different kinds of real-world problems, as well as scientists, researchers, and practitioners in AI industries, autonomous vehicles, and cyber-physical systems who wish to pursue new scientific innovations and update their knowledge on federated and transfer learning and their applications.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen