Produktnummer:
18d756fced2a654df7b1ad267911a538b2
Themengebiete: | Deep Learning Differential Privacy Distributed Machine Learning Federated Learning Fine-grained Federated Learning |
---|---|
Veröffentlichungsdatum: | 12.06.2021 |
EAN: | 9783030706036 |
Sprache: | Englisch |
Seitenzahl: | 196 |
Produktart: | Gebunden |
Herausgeber: | Gaber, Mohamed Medhat Rehman, Muhammad Habib ur |
Verlag: | Springer International Publishing |
Untertitel: | Towards Next-Generation AI |
Produktinformationen "Federated Learning Systems"
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen