Exact Exponential Algorithms
Produktnummer:
1897a5e5d88142432682474c4fa89c43c1
Autor: | Fomin, Fedor V. Kratsch, Dieter |
---|---|
Themengebiete: | Branching Combinatorics Dynamic programming Exact algorithms Exponential algorithms Graph Hard optimization Satisfiability Vertex algorithms |
Veröffentlichungsdatum: | 01.12.2012 |
EAN: | 9783642265662 |
Sprache: | Englisch |
Seitenzahl: | 206 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Exact Exponential Algorithms"
For a long time computer scientists have distinguished between fast and slow algo rithms. Fast (or good) algorithms are the algorithms that run in polynomial time, which means that the number of steps required for the algorithm to solve a problem is bounded by some polynomial in the length of the input. All other algorithms are slow (or bad). The running time of slow algorithms is usually exponential. This book is about bad algorithms. There are several reasons why we are interested in exponential time algorithms. Most of us believe that there are many natural problems which cannot be solved by polynomial time algorithms. The most famous and oldest family of hard problems is the family of NP complete problems. Most likely there are no polynomial time al gorithms solving these hard problems and in the worst case scenario the exponential running time is unavoidable. Every combinatorial problem is solvable in ?nite time by enumerating all possi ble solutions, i. e. by brute force search. But is brute force search always unavoid able? De?nitely not. Already in the nineteen sixties and seventies it was known that some NP complete problems can be solved signi?cantly faster than by brute force search. Three classic examples are the following algorithms for the TRAVELLING SALESMAN problem, MAXIMUM INDEPENDENT SET, and COLORING.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen