Produktnummer:
1804a8091d67454aa491d70578a47ee20e
Themengebiete: | Artificial Neural Network Feedforward Neural Network Modular Neural Network Neuro-fuzzy Networks Physical Neural Network Probabilistic Neural Network Radial Basis Function Network Recurrent Neural Network Self-Optimizing Neural Network Spiking Neural Network |
---|---|
Veröffentlichungsdatum: | 25.11.2019 |
EAN: | 9789813299894 |
Sprache: | Englisch |
Seitenzahl: | 286 |
Produktart: | Gebunden |
Herausgeber: | Aljarah, Ibrahim Faris, Hossam Mirjalili, Seyedali |
Verlag: | Springer Singapore |
Untertitel: | Algorithms and Applications |
Produktinformationen "Evolutionary Machine Learning Techniques"
This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen