Evolutionary Approach to Machine Learning and Deep Neural Networks
Produktnummer:
1803b5ce43ddff453eba6fefc588ad4fb3
Autor: | Iba, Hitoshi |
---|---|
Themengebiete: | Deep Learning Differential Evolution Evolutionary Computation Gene Regulatory Networks Genetic Algorithms Genetic Programming Machine Learning Meta-Heuristics Particle Swarm Optimization |
Veröffentlichungsdatum: | 26.06.2018 |
EAN: | 9789811301995 |
Sprache: | Englisch |
Seitenzahl: | 245 |
Produktart: | Gebunden |
Verlag: | Springer Singapore |
Untertitel: | Neuro-Evolution and Gene Regulatory Networks |
Produktinformationen "Evolutionary Approach to Machine Learning and Deep Neural Networks"
This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen