Produktnummer:
181700c03768634037a7fa0dcfcdb91f84
Themengebiete: | Bagging Predictors Basic Boosting Ensemble learning Object Detection classification algorithm deep neural networks machine learning random forest stacked generalization statistical classifiers |
---|---|
Veröffentlichungsdatum: | 17.02.2012 |
EAN: | 9781441993250 |
Sprache: | Englisch |
Seitenzahl: | 332 |
Produktart: | Gebunden |
Herausgeber: | Ma, Yunqian Zhang, Cha |
Verlag: | Springer US |
Untertitel: | Methods and Applications |
Produktinformationen "Ensemble Machine Learning"
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen