Dual Variational Approach to Nonlinear Diffusion Equations
Produktnummer:
18cf7c1a5760b8451894fbb44373250db4
Autor: | Marinoschi, Gabriela |
---|---|
Themengebiete: | Brezis-Ekeland principle Convex optimization problems Dual variational inequalities Legendre-Fenchel inequalities Maximum principle Variational methods m-accretive operators |
Veröffentlichungsdatum: | 29.03.2023 |
EAN: | 9783031245824 |
Sprache: | Englisch |
Seitenzahl: | 212 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Dual Variational Approach to Nonlinear Diffusion Equations"
This monograph explores a dual variational formulation of solutions to nonlinear diffusion equations with general nonlinearities as null minimizers of appropriate energy functionals. The author demonstrates how this method can be utilized as a convenient tool for proving the existence of these solutions when others may fail, such as in cases of evolution equations with nonautonomous operators, with low regular data, or with singular diffusion coefficients. By reducing it to a minimization problem, the original problem is transformed into an optimal control problem with a linear state equation. This procedure simplifies the proof of the existence of minimizers and, in particular, the determination of the first-order conditions of optimality. The dual variational formulation is illustrated in the text with specific diffusion equations that have general nonlinearities provided by potentials having various stronger or weaker properties. These equations can represent mathematical modelsto various real-world physical processes. Inverse problems and optimal control problems are also considered, as this technique is useful in their treatment as well.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen