Domain Generalization with Machine Learning in the NOvA Experiment
Produktnummer:
18f3112711ac904910ade3470694d69888
Autor: | Sutton, Andrew T.C. |
---|---|
Themengebiete: | 3-flavor analysis Adversarial domain generalization Event reconstruction Machine learning in HEP NOvA experiment Neutrino oscillation Particle identification Physics beyond the Standard Model |
Veröffentlichungsdatum: | 09.11.2024 |
EAN: | 9783031435850 |
Sprache: | Englisch |
Seitenzahl: | 170 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Domain Generalization with Machine Learning in the NOvA Experiment"
This thesis presents significant advances in the use of neural networks to study the properties of neutrinos. Machine learning tools like neural networks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics processes and the detector response; these simulations work well, but do not match the real experiment perfectly. Thus, neural networks trained on simulated datasets must include systematic uncertainties that account for possible imperfections in the simulation. This thesis presents the first application in HEP of adversarial domain generalization to a regression neural network. Applying domain generalization to problems with large systematic variations will reduce the impact of uncertainties while avoiding the risk offalsely constraining the phase space. Reducing the impact of systematic uncertainties makes NOvA analysis more robust, and improves the significance of experimental results.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen