Differential Harnack Inequalities and the Ricci Flow
Produktnummer:
183b11577753a4482f9401aff576d5e766
Autor: | Müller, Reto |
---|---|
Themengebiete: | Harnack inequality Parabolic partial differential equations Ricci Flow |
Veröffentlichungsdatum: | 02.08.2006 |
EAN: | 9783037190302 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 92 |
Produktart: | Kartoniert / Broschiert |
Verlag: | EMS Press |
Produktinformationen "Differential Harnack Inequalities and the Ricci Flow"
The classical Harnack inequalities play an important role in the study of parabolic partial differential equations. The idea of finding a differential version of such a classical Harnack inequality goes back to Peter Li and Shing Tung Yau, who introduced a pointwise gradient estimate for a solution of the linear heat equation on a manifold which leads to a classical Harnack type inequality if being integrated along a path. Their idea has been successfully adopted and generalized to (nonlinear) geometric heat flows such as mean curvature flow or Ricci flow; most of this work was done by Richard Hamilton. In 2002, Grisha Perelman presented a new kind of differential Harnack inequality which involves both the (adjoint) linear heat equation and the Ricci flow. This led to a completely new approach to the Ricci flow that allowed interpretation as a gradient flow which maximizes different entropy functionals. This approach forms the main analytic core of Perelman's attempt to prove the Poincaré conjecture. It is, however, of completely independent interest and may as well prove useful in various other areas, such as, for instance, the theory of Kähler manifolds. The goal of this book is to explain this analytic tool in full detail for the two examples of the linear heat equation and the Ricci flow. It begins with the original Li-Yau result, presents Hamilton's Harnack inequalities for the Ricci flow, and ends with Perelman's entropy formulas and space-time geodesics.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen