Differentiability in Banach Spaces, Differential Forms and Applications
Produktnummer:
185b006f0890de49da99fe5b86caa44f95
Autor: | Doria, Celso Melchiades |
---|---|
Themengebiete: | Banach Space De Rham Cohomology Differential Forms Differential of Functions Harmonic Forms Harmonic Functions Hodge Theorem Maxwell’s Equations Stoke’s Theorem |
Veröffentlichungsdatum: | 21.07.2022 |
EAN: | 9783030778361 |
Sprache: | Englisch |
Seitenzahl: | 362 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Differentiability in Banach Spaces, Differential Forms and Applications"
This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the finalchapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen