Deep Learning for Computational Problems in Hardware Security
Produktnummer:
182873c81851d744cb9a717c4a0ec6d096
Autor: | Chakraborty, Rajat Subhra Santikellur, Pranesh |
---|---|
Themengebiete: | Deep Neural Networks Hardware Security Machine learning Physically Unclonable Function Tensor Regression Networks |
Veröffentlichungsdatum: | 17.09.2023 |
EAN: | 9789811940194 |
Sprache: | Englisch |
Seitenzahl: | 84 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Singapore |
Untertitel: | Modeling Attacks on Strong Physically Unclonable Function Circuits |
Produktinformationen "Deep Learning for Computational Problems in Hardware Security"
The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen