Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Constitutive-model-free data-driven computational mechanics

45,80 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 18588b986420664f94a777ab8db549cb97
Autor: Eggersmann, Robert
Themengebiete: constitutive behavior data-driven data structures inelasticity mechanics tensor voting
Veröffentlichungsdatum: 22.02.2022
EAN: 9783844084559
Auflage: 1
Sprache: Englisch
Seitenzahl: 134
Produktart: Kartoniert / Broschiert
Verlag: Shaker
Produktinformationen "Constitutive-model-free data-driven computational mechanics"
For many years, researchers have been developing great improvements to the finite element method. Here, a central challenge is to formulate material models. To circumvent the complexity of material modeling, a paradigm shift to data-driven computing has taken place. This dissertation represents a merger of three published works of the author and his coauthors concentrating on the data-driven computing paradigm in mechanics initially introduced by Kirchdoerfer and Oritz in 2016. Here, the ansatz is to treat the fundamental laws in mechanics, i.e., the equilibrium of forces and compatibility, as boundary conditions of a minimization problem. The material data is used directly in the computation without replacing it by any model simplification. This procedure makes it unnecessary to fit model parameters and bypasses uncertainties that come along with the material modeling step. The current thesis begins with an introduction, including a literature overview and a detailed description of research-relevant questions. The first article extends the data-driven formulation to inelasticity. This fundamental extension enables computations with history-dependent or path-dependent materials and, therefore, represents a generalization to the data-driven paradigm. The second article deals with an extension to the data-driven computing paradigm for sparse data set. The article states the possible incorporation of locally-linear tangent spaces into the solver using the tensor voting method. The final article addresses the efficiency of the data-driven solver. Therefore, various data structures are compared and adopted to the nearest neighbor problem in data-driven computing. It is shown that approximate nearest neighbor algorithms can accelerate the method considerably.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen