Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces
Produktnummer:
18551c3b499100492793a7e6baab39a933
Autor: | Shchepetilov, Alexey V. |
---|---|
Themengebiete: | Hamiltonian functions Potential Riemannian spaces curvature differential geometry integrable systems manifold two-body problem |
Veröffentlichungsdatum: | 22.10.2010 |
EAN: | 9783642071270 |
Sprache: | Englisch |
Seitenzahl: | 242 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces"
Mathematics develops both due to demands of other sciences and due to its internal logic. The latter fact explains the attention of mathematicians to many problems, which are in close connection with basic mathematical notions, even if these problems have no direct practical applications. It is well known that the space of constant curvature is one of the basic geometry notion [208], which induced the wide ?eld for investigations. As a result there were found numerous connections of constant curvature spaces with other branches of mathematics, for example, with integrable partial dif- 1 ferential equations [36, 153, 189] and with integrable Hamiltonian systems [141]. Geodesic ?ows on compact surfaces of a constant negative curvature (with the genus 2) generate many test examples for ergodic theory (see also 3 [183] and the bibliography therein). The hyperbolic space H (R) is the space of velocities in special relativity (see Sect. 7.4.1) and also arises as space-like sections in some models of general relativity.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen