Big Data SMACK
Produktnummer:
1839c360a9afb34817a5da1d958d8658bd
Autor: | Estrada, Raul Ruiz, Isaac |
---|---|
Themengebiete: | Akka Apache Cassandra Apache Kafka Apache Mesos Apache Spark Big Data Docker Hadoop No-SQL databases Scala |
Veröffentlichungsdatum: | 29.09.2016 |
EAN: | 9781484221747 |
Sprache: | Englisch |
Seitenzahl: | 264 |
Produktart: | Kartoniert / Broschiert |
Verlag: | APRESS |
Untertitel: | A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka |
Produktinformationen "Big Data SMACK"
Learn how to integrate full-stack open source big data architecture and to choose the correct technology—Scala/Spark, Mesos, Akka, Cassandra, and Kafka—in every layer. Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. This book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer: The language: ScalaThe engine: Spark (SQL, MLib, Streaming, GraphX)The container: Mesos, DockerThe view: AkkaThe storage: CassandraThe message broker: Kafka What You Will Learn: Make big data architecture without using complex Greek letter architecturesBuild a cheap but effective cluster infrastructureMake queries, reports, and graphs that business demandsManage and exploit unstructured and No-SQL data sourcesUse tools to monitor the performance of your architectureIntegrate all technologies and decide which ones replace and which ones reinforce Who This Book Is For:Developers, data architects, and data scientists looking to integrate the most successful big data open stack architecture and to choose the correct technology in every layer

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen