Asymptotic Methods in Quantum Mechanics
Produktnummer:
1864240ae2986a43afb82c19bc58651fda
Autor: | Patil, S.H. Tang, K.T. |
---|---|
Themengebiete: | Potential Quantum mechanics Thomas-Fermi model Wave diatomic molecule molecule scattering |
Veröffentlichungsdatum: | 26.04.2000 |
EAN: | 9783540672401 |
Sprache: | Englisch |
Seitenzahl: | 174 |
Produktart: | Gebunden |
Verlag: | Springer Berlin |
Untertitel: | Application to Atoms, Molecules and Nuclei |
Produktinformationen "Asymptotic Methods in Quantum Mechanics"
Quantum mechanics and the Schrodinger equation are the basis for the de scription of the properties of atoms, molecules, and nuclei. The development of reliable, meaningful solutions for the energy eigenfunctions of these many is a formidable problem. The usual approach for obtaining particle systems the eigenfunctions is based on their variational extremum property of the expectation values of the energy. However the complexity of these variational solutions does not allow a transparent, compact description of the physical structure. There are some properties of the wave functions in some specific, spatial domains, which depend on the general structure of the Schrodinger equation and the electromagnetic potential. These properties provide very useful guidelines in developing simple and accurate solutions for the wave functions of these systems, and provide significant insight into their physical structure. This point, though of considerable importance, has not received adequate attention. Here we present a description of the local properties of the wave functions of a collection of particles, in particular the asymptotic properties when one of the particles is far away from the others. The asymptotic behaviour of this wave function depends primarily on the separation energy of the outmost particle. The universal significance of the asymptotic behaviour of the wave functions should be appreciated at both research and pedagogic levels. This is the main aim of our presentation here.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen