Application of Integrable Systems to Phase Transitions
Produktnummer:
18d7e24e658c9d47ceb86b07dbff15f2f3
Autor: | Wang, C.B. |
---|---|
Themengebiete: | Integrable system Large-N asymptotics Matrix model Phase transition Planar diagram Power-law Seiberg-Witten theory String equation Toda lattice Unified model |
Veröffentlichungsdatum: | 30.07.2013 |
EAN: | 9783642385643 |
Sprache: | Englisch |
Seitenzahl: | 219 |
Produktart: | Gebunden |
Verlag: | Springer Berlin |
Produktinformationen "Application of Integrable Systems to Phase Transitions"
The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen