Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs
Produktnummer:
18af98a7b5181a41b6850c3d4cbf55758a
Autor: | Dung, Dinh Nguyen, Van Kien Schwab, Christoph Zech, Jakob |
---|---|
Themengebiete: | Finite Element Methods Gaussian Measures High-Dimensional Approximation Parametric and Stochastic PDE Partial Differential Equations Polynomial Chaos Smolyak Quadrature Sparse-Grid Interpolation Uncertainty Quantification |
Veröffentlichungsdatum: | 14.10.2023 |
EAN: | 9783031383830 |
Sprache: | Englisch |
Seitenzahl: | 207 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs"
The present book develops the mathematical and numerical analysis of linear, elliptic and parabolic partial differential equations (PDEs) with coefficients whose logarithms are modelled as Gaussian random fields (GRFs), in polygonal and polyhedral physical domains. Both, forward and Bayesian inverse PDE problems subject to GRF priors are considered.Adopting a pathwise, affine-parametric representation of the GRFs, turns the random PDEs into equivalent, countably-parametric, deterministic PDEs, with nonuniform ellipticity constants. A detailed sparsity analysis of Wiener-Hermite polynomial chaos expansions of the corresponding parametric PDE solution families by analytic continuation into the complex domain is developed, in corner- and edge-weighted function spaces on the physical domain.The presented Algorithms and results are relevant for the mathematical analysis of many approximation methods for PDEs with GRF inputs, such as model order reduction, neural network and tensor-formatted surrogates of parametric solution families. They are expected to impact computational uncertainty quantification subject to GRF models of uncertainty in PDEs, and are of interest for researchers and graduate students in both, applied and computational mathematics, as well as in computational science and engineering.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen