Analysis of a Finite Element Method
Produktnummer:
180a1ac3d0efe3446e9b449cd38d040065
Autor: | Sewell, Granville |
---|---|
Themengebiete: | Analysis Eigenvalue Numerical integration algorithms differential equation eXist eigenvalue problem equation finite element method integration |
Veröffentlichungsdatum: | 11.11.1985 |
EAN: | 9780387962269 |
Sprache: | Englisch |
Seitenzahl: | 154 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Untertitel: | PDE/PROTRAN |
Produktinformationen "Analysis of a Finite Element Method"
This text can be used for two quite different purposes. It can be used as a reference book for the PDElPROTRAN user· who wishes to know more about the methods employed by PDE/PROTRAN Edition 1 (or its predecessor, TWODEPEP) in solving two-dimensional partial differential equations. However, because PDE/PROTRAN solves such a wide class of problems, an outline of the algorithms contained in PDElPROTRAN is also quite suitable as a text for an introductory graduate level finite element course. Algorithms which solve elliptic, parabolic, hyperbolic, and eigenvalue partial differential equation problems are pre sented, as are techniques appropriate for treatment of singularities, curved boundaries, nonsymmetric and nonlinear problems, and systems of PDEs. Direct and iterative linear equation solvers are studied. Although the text emphasizes those algorithms which are actually implemented in PDEI PROTRAN, and does not discuss in detail one- and three-dimensional problems, or collocation and least squares finite element methods, for example, many of the most commonly used techniques are studied in detail. Algorithms applicable to general problems are naturally emphasized, and not special purpose algorithms which may be more efficient for specialized problems, such as Laplace's equation. It can be argued, however, that the student will better understand the finite element method after seeing the details of one successful implementation than after seeing a broad overview of the many types of elements, linear equation solvers, and other options in existence.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen