Alternating Direction Method of Multipliers for Machine Learning
Produktnummer:
18485856cbf02e4afcb83096006e248084
Autor: | Fang, Cong Li, Huan Lin, Zhouchen |
---|---|
Themengebiete: | Alternating Direction Method of Multipliers Constrained Optimization First-Order Optimization Lagrange Multiplier Method Operator Splitting |
Veröffentlichungsdatum: | 17.06.2023 |
EAN: | 9789811698422 |
Sprache: | Englisch |
Seitenzahl: | 263 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Singapore |
Produktinformationen "Alternating Direction Method of Multipliers for Machine Learning"
Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen