Advanced Calculus
Produktnummer:
18af006ac6d4084a23bd041d70c723ebc5
Autor: | Callahan, James J. |
---|---|
Themengebiete: | Algebra Derivative Green's theorem Morse's lemma Riemann and Darboux integrals Stokes' theorem calculus change of variables formula critical points derivative as linear approximation |
Veröffentlichungsdatum: | 23.08.2016 |
EAN: | 9781493940707 |
Sprache: | Englisch |
Seitenzahl: | 526 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Untertitel: | A Geometric View |
Produktinformationen "Advanced Calculus"
A half-century ago, advanced calculus was a well-de?ned subject at the core of the undergraduate mathematics curriulum. The classic texts of Taylor [19], Buck [1], Widder [21], and Kaplan [9], for example, show some of the ways it was approached. Over time, certain aspects of the course came to be seen as more signi?cant—those seen as giving a rigorous foundation to calculus—and they - came the basis for a new course, an introduction to real analysis, that eventually supplanted advanced calculus in the core. Advanced calculus did not, in the process, become less important, but its role in the curriculum changed. In fact, a bifurcation occurred. In one direction we got c- culus on n-manifolds, a course beyond the practical reach of many undergraduates; in the other, we got calculus in two and three dimensions but still with the theorems of Stokes and Gauss as the goal. The latter course is intended for everyone who has had a year-long introduction to calculus; it often has a name like Calculus III. In my experience, though, it does not manage to accomplish what the old advancedcalculus course did. Multivariable calculusnaturallysplits intothreeparts:(1)severalfunctionsofonevariable,(2)one function of several variables, and (3) several functions of several variables. The ?rst two are well-developed in Calculus III, but the third is really too large and varied to be treated satisfactorily in the time remaining at the end of a semester. To put it another way: Green’s theorem ?ts comfortably; Stokes’ and Gauss’ do not.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen