A Spinorial Approach to Riemannian and Conformal Geometry
Produktnummer:
1835dfbc9479b14cde9eb67c2a4e3436d1
Autor: | Bourguignon, Jean-Pierre Hijazi, Oussama Milhorat, Jean-Louis Moroianu, Andrei Moroianu, Sergiu |
---|---|
Themengebiete: | Dirac operators Kähler manifolds Penrose operator Spin geometry Weyl geometry conformal geometry |
Veröffentlichungsdatum: | 01.06.2015 |
EAN: | 9783037191361 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 462 |
Produktart: | Buch |
Verlag: | EMS Press |
Produktinformationen "A Spinorial Approach to Riemannian and Conformal Geometry"
The book gives an elementary and comprehensive introduction to Spin Geometry, with particular emphasis on the Dirac operator which plays a fundamental rôle in differential geometry and mathematical physics. After a self-contained presentation of the basic algebraic, geometrical, analytical and topological ingredients, a systematic study of the spectral properties of the Dirac operator on compact spin manifolds is carried out. The classical estimates on eigenvalues and their limiting cases are discussed next, highlighting the subtle interplay of spinors and special geometric structures. Several applications of these ideas are presented, including spinorial proofs of the Positive Mass Theorem or the classification of positive Kähler–Einstein contact manifolds. Representation theory is used to explicitly compute the Dirac spectrum of compact symmetric spaces. The special features of the book include a unified treatment of Spinc and conformal spin geometry (with special emphasis on the conformal covariance of the Dirac operator), an overview with proofs of the theory of elliptic differential operators on compact manifolds based on pseudodifferential calculus, a spinorial characterization of special geometries, and a self-contained presentation of the representation-theoretical tools needed in order to apprehend spinors. This book will help advanced graduate students and researchers to get more familiar with this beautiful, though not sufficiently known, domain of mathematics with great relevance to both theoretical physics and geometry.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen