A Course on Integration Theory
Produktnummer:
1837360ad7fec6432ea298bbc487ea6672
Autor: | Lerner, Nicolas |
---|---|
Themengebiete: | Fourier transformation L^p spaces Lebesgue measure measure theory |
Veröffentlichungsdatum: | 17.03.2014 |
EAN: | 9783034806930 |
Sprache: | Englisch |
Seitenzahl: | 492 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Basel |
Untertitel: | including more than 150 exercises with detailed answers |
Produktinformationen "A Course on Integration Theory"
This textbook provides a detailed treatment of abstract integration theory, construction of the Lebesgue measure via the Riesz-Markov Theorem and also via the Carathéodory Theorem. It also includes some elementary properties of Hausdorff measures as well as the basic properties of spaces of integrable functions and standard theorems on integrals depending on a parameter. Integration on a product space, change of variables formulas as well as the construction and study of classical Cantor sets are treated in detail. Classical convolution inequalities, such as Young's inequality and Hardy-Littlewood-Sobolev inequality are proven. The Radon-Nikodym theorem, notions of harmonic analysis, classical inequalities and interpolation theorems, including Marcinkiewicz's theorem, the definition of Lebesgue points and Lebesgue differentiation theorem are further topics included. A detailed appendix provides the reader with various elements of elementary mathematics, such as a discussion around the calculation of antiderivatives or the Gamma function. The appendix also provides more advanced material such as some basic properties of cardinals and ordinals which are useful in the study of measurability.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen